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Abstract—The alterations of dynamic brain functions in Alzheimer’s disease (AD) remain far from well under-
stood. In this study, using functional magnetic resonance imaging (fMRI) data, we adopted a co-activation pattern
(CAP) approach, which relies on very few assumptions, to explore the differences of brain dynamics among
healthy elderly, patients with early amnestic mild cognitive impairment (MCI) and patients with AD. Briefly, k-
means clustering was applied to all fMRI frames from the three groups and generated a set of reproducible CAPs.
We found the obtained CAPs showed high correspondence to the well acknowledged functional networks includ-
ing default mode network (DMN), executive control network and visual networks, etc. Different from previous
CAP-based studies, we further quantitatively analyzed the temporal dependence of the CAPs using multiple
parameters. Primary findings include, for AD and MCI compared with NC, the decreased mean fraction of occur-
rence and persistence of DMN related CAPs, which indicates the typical DMN damage; the increased/decreased
mean persistence of ventral/dorsal visual network related CAPs, which may associate with the visuospatial dis-
order of patients with AD pathology; the elevated transition and CAP entropies and multiple alterations of CAP
transition probabilities, which imply the altered mode of information flow and lifted system uncertainty in AD
brains. We also found correlations of proposed measurements to cerebrospinal fluid biomarkers and neuropsy-
chological scores. This study verified the AD-related alteration found by traditional FC analysis, and proposed
several new biomarkers which have the potential for assisting AD treatment and early diagnosis. � 2019 IBRO.
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INTRODUCTION

Alzheimer’s disease (AD) is a neurodegenerative disease

with great threat to the elderly. Although the progression

of AD is thought to be not reversible, the early diagnosis

of AD is important to maximize the benefit of treatment

and lifestyle prevention strategies for AD. Unfortunately,

according to the current clinical criteria, AD diagnosis is
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only made when a patient has suffered from dementia

which corresponds to the late stage of AD (Belleville

et al., 2017; Boland, 2015; McKhann et al., 2011). To this

end, it is crucial to better understand AD mechanism and

identify AD specific brain abnormality especially at its

earlier stage, also known as mild cognitive impairment

(MCI).

Functional magnetic resonance imaging (fMRI) could

provide time-resolved information about brain

spontaneous activity with high spatial resolution which

enables us to explore the interactions among brain

regions. With fMRI time series, relationship between

neural activities of different regions can be estimated by

calculating their functional connectivities (FCs).

Typically, brain networks constructed by FCs computed

from long or full length of fMRI series are known as

long-term or static networks. Among them, default mode

network (DMN) has been mostly reported to be relevant

to AD and disruptions in the DMN may lead to typical

AD symptoms since the close relationship between
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DMN and memory formation and retrieval (Banks et al.,

2018; Buckner et al., 2008; Qi et al., 2018).

Long-term functional networks can reflect static brain

functional patterns; however, these interpretations are

too coarse which omit dynamic information underlying

the fMRI time courses. Therefore, short-term or

instantaneous brain activities and their related functional

patterns have attracted more attention in recent years.

Sliding window based strategies (Chang and Glover,

2010; Hutchison et al., 2013) are direct ways to extract

such dynamic information whereas they always face an

intrinsic problem of selecting appropriate window width

and shape. In contrast, time-frame based strategies (Liu

and Duyn, 2013; Smith et al., 2012; Taghia et al., 2017;

Tagliazucchi et al., 2012; Vidaurre et al., 2017) avoid this

problem by adopting time frame as the basic analysis unit,

and therefore have the ability to capture instantaneous

and dynamic information. Typically, several state-space

models have been proposed recently trying to describe

recurred instantaneous activities by a set of states. For

example, Vidaurre et al. (2017) proposed a hidden Mar-

kov model (HMM) based method to infer such states,

and discovered a hierarchical temporal structure of brain

network dynamics. Smith et al. (2012) proposed a tempo-

ral ICA based method to extract temporal function modes

(TFM) trying to identify functional networks based on their

temporal independence. Physiological interpretation can

be made according to the characteristics of the states

and abundant dynamic information can be then acquired

by analyzing the state time courses. However, we need

to notice that the extracted states and their behaviors lar-

gely depend on the model assumptions and the robust-

ness of the inference is affected by the model

complexity and sample size.

In this study, we adopted the co-activation pattern

(CAP) approach (Liu and Duyn, 2013), which relies

on very few assumptions, to construct a state-space

model and investigated the brain dynamics in AD,

EMCI, and NC. Briefly, CAPs are a set of averaged

brain activation maps calculated by clustering fMRI

frames. Different from the previous studies, we focus

on the temporal dependence of the CAP-constructed

brain state-space.

Specifically, apart from classical measurements such

as dwell time and transition probabilities of the CAPs,

we proposed two novel indicators to measure the

disorder degree of the brain state-space and we

hypothesize that the elevated disorder degree of brain

system may associate with the cognitive dysfunctions

and also with the altered cerebrospinal fluid (CSF)

biomarkers in patients with AD or MCI. Further, based

on functional interpretations of the CAPs according to

their spatial similarity to known functional networks, we

discussed the possible relationships between the altered

brain dynamics and the disease pathology. This

research provides interesting clues for understanding

the mechanism of AD, and is supposed useful for AD

treatment and early diagnosis.
EXPERIMENTAL PROCEDURES

Data acquisition

Functional and structural MRI data were downloaded

from the Alzheimer’s disease Neuroimaging Initiative

(ADNI) database (adni.loni.usc.edu). The ADNI was

launched in 2003 as a public–private partnership, led by

Principal Investigator Michael W. Weiner, MD. The

primary goal of ADNI has been to test whether serial

magnetic resonance imaging (MRI), positron emission

tomography (PET), other biological markers, and clinical

and neuropsychological assessment can be combined

to measure the progression of MCI and early AD. The

inclusion/exclusion criteria are as follows (for up-to-date

information, see www.adni-info.org):

1. Normal subjects: MMSE (Mini-Mental State Examina-

tion) scores between 24 and 30 (inclusive), a CDR of

0, non-depressed, non MCI, and nondemented. The

age range of normal subjects will be roughly matched

to that of MCI and AD subjects.

2. Early amnestic MCI (EMCI) subjects: MMSE scores

between 24 and 30 (inclusive), a memory complaint,

have objective memory loss measured by education

adjusted scores on Wechsler Memory Scale Logical

Memory II, a CDR of 0.5, absence of significant levels

of impairment in other cognitive domains, essentially

preserved activities of daily living, and an absence of

dementia

3. AD subjects: MMSE scores less than 24 (inclusive), a

CDR greater than 0.5 (inclusive), and meets NINCDS/

ADRDA criteria for probable AD (this criteria is different

from the one in ADNI site for this study).

We collected the samples from the first 3 stages of

ADNI—ADNI 1, ADNI-GO and ADNI 2. Totally 118

subjects who have both baseline structural and

functional MRI data were included in this study of which

the demographics are listed in Table 1.

All the subjects (eyes open) were scanned by 3.0-Tesla

Philips MRI scanner. Resting-state functional images were

obtained by echo-planar imaging sequence with following

parameters: repetition time (TR) = 3000 ms; echo time

(TE) = 30 ms; flip angle = 80�, number of slices = 48;

slice thickness = 3.3 mm; spatial resolution = 3 � 3 �
3 mm3 and matrix = 64 � 64. The length of each time

series is 140 time points. T1-weighted images were

acquired using a sagittal magnetization prepared rapid

gradient echo (MP-RAGE) three-dimensional sequence

with following parameters: slice thickness = 1.2 mm,

TR= 6700 ms, TE = 3.1 ms, flip angle = 9�,
matrix = 256 � 256 � 170. All original image files are

available to the general scientific community.

In addition, we collected the CSF biomarkers such as

the accumulation of amyloid b (Ab), tau protein (tau) and

phosphorylated tau protein (p-tau), and the

neuropsychological scores such as MMSE, GDS

(Geriatric Depression Scale), CDR (Clinical Dementia



Table 1. Demographics of the subjects

Group AD EMCI NC

Sample size 29 49 40

Age (year)a 74.2 ± 7.5 72.2 ± 6.7 75.0 ± 6.3

Female percentageb 53% 52% 55%

MMSEc 21.2 ± 3.4 27.9 ± 1.8 29.0 ± 1.6

GDSd 1.7 ± 1.6 2.1 ± 2.4 0.9 ± 1.1

CDRe 0.9 ± 0.3 0.5 ± 0.2 0.1 ± 0.2

FAQf 16.7 ± 6.45 3.6 ± 4.9 0.7 ± 2.8

ADNI-MEMg �1.0 ± 0.6 0.5 ± 0.6 1.0 ± 0.6

ADNI-EFh �1.0 ± 0.7 0.5 ± 0.8 0.8 ± 0.7

Ab (CSF, pg/ml)i 138.7 ± 39.3 186.6 ± 59.0 185.0 ± 50.7

Tau (CSF, pg/ml)j 141.7 ± 77.9 87.6 ± 68.9 72.0 ± 34.6

Key: MMSE=mini-mental state examination; Ab (CSF), the accumulation of amyloid b in cerebrospinal fluid; ADNI-MEM, ADNI-EF: composite scores for memory and

executive functioning of the ADNI cohort.
a One-way ANOVA among groups: F= 1.456, p= 0.237.
b v2 test for gender composition among groups: v2 = 0.320, p= 0.852.
c One-way ANOVA among groups: F= 108.3, p< 0.001; Tamhane post hoc pairwise comparison: AD vs. EMCI, AD vs. NC, p< 0.001; EMCI vs. NC, p= 0.008.
d One-way ANOVA among groups: F= 3.6, p= 0.031; Tamhane post hoc pairwise comparison: AD vs. EMCI, AD vs. NC, p> 0.05; EMCI vs. NC, p= 0.023.
e One-way ANOVA among groups: F= 91.6, p< 0.001; Tamhane post hoc pairwise comparison: AD vs. EMCI, AD vs. NC, EMCI vs. NC, p< 0.001.
f One-way ANOVA among groups: F= 85.7, p< 0.001; Tamhane post hoc pairwise comparison: AD vs. EMCI, AD vs. NC, EMCI vs. NC, p< 0.01.
g One-way ANOVA among groups: F= 97.0, p< 0.001; Tamhane post hoc pairwise comparison: AD vs. EMCI, AD vs. NC, EMCI vs. NC, p< 0.01.
h One-way ANOVA among groups: F= 47.3, p< 0.001; Tamhane post hoc pairwise comparison: AD vs. EMCI, AD vs. NC, p< 0.01; EMCI vs. NC, p> 0.05.
i Kruskal–Wallis test among groups: H = 14.1, p< 0.001; Mann-Whitney U test for post hoc pairwise comparison: AD vs. EMCI, p< 0.001; AD vs. NC, p= 0.003; EMCI

vs. NC, p= 0.877.
j Kruskal–Wallis test among groups: H = 19.3, p< 0.001; Mann-Whitney U test for post hoc pairwise comparison: AD vs. EMCI, p< 0.001; AD vs. NC, p< 0.001; EMCI

vs. NC, p= 0.427.
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Rating Scale), FAQ (Functional Activities Questionnaire)

and two composite scores for memory (ADNI-MEM) and

executive functioning (ADNI-EF) of the cohort (Gibbons

et al., 2012). The mean and standard deviation of the

accumulation of Ab, tau and the neuropsychological

scores of the three groups are also listed in Table 1.
Data preprocessing

Structural and functional MRI data was downloaded from

public database ADNI and preprocessed complying

standard fMRI preprocessing pipeline using Data

Processing Assistant for Resting State fMRI (DPARSF,

v3.2 advanced edition) software package(Yan and

Zang, 2010). Specific preprocessing steps include slice

timing, realignment (head motion correction with rigid

transform), co-registering T1 images to functional images,

co-variables (head motion parameters, white matter, CSF

and global signals) regression, spatial normalization to

MNI space and smoothing with a 4 mm FWHM Gaussian

kernel (and filtering with a 0.01–0.1 Hz band pass filter).

In addition, each of original functional images was bina-

rized with a threshold to generate a mask which was also

normalized into MNI space. The intersection of all the nor-

malized masks was used to remove background voxels

as well as some voxels at inferior temporal lobe and infe-

rior frontal lobe with missing signals perhaps caused by

magnetic field inhomogeneity.

Note that we did global signals regression (GSR) in

this study. Some previous fMRI studies (Murphy et al.,

2009a; Saad et al., 2012) suggested the global signal

possibly represented some specific brain-wide activities

and argued that GSR may lead to artificial results such

as the anti-correlations between the task-positive net-

works and DMN. However, if not doing GSR, we found
that the clustering process would to some extent be dom-

inated by the global signal, hence several CAPs would

exhibit strong global co-(de)activation and specific spatial

organizations could not be distinguished from these

CAPs.
CAP calculation

CAPs are obtained by k-means clustering on all the fMRI

frames of all the subjects therefore all three groups finally

share a common set of CAPs. This is for the convenience

of subsequent quantitative group comparison. Before

clustering, z transformation was applied therefore each

voxel had a time course with mean of 0 and standard

deviation of 1. Referring to the previous studies (Iraji

et al., 2018; Vidaurre et al., 2017) and considering the

data length of this study, we searched the initial k from

6 to 15, and the elbow criterion was used to determine

the final k value to be 10 (Damaraju et al., 2014). Initial

cluster centers were randomly selected from all the fMRI

frames. The distances of frames to cluster centers were

measured by their spatial similarities. During the cluster-

ing process, the cluster with extremely few members

(<1% of total frames) was treated as noisy cluster and

discarded. The algorithm ended when the relative change

of cluster centers below 0.01% or reach the maximum

iteration number (80 in this study). The final cluster cen-

ters are termed CAPs. The CAPs’ sequences were

obtained by labeling the original time frames according

to their CAP-memberships.
Temporal dependence measurements

Following parameters were calculated based on the CAP

sequence for each subject.
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(1) Fraction of occurrence (FO), which is defined by:

FOi ¼ Ni=N

where Ni is the number of time points labeled by i-th CAP

and N is the total number of time points of the subject. The

value of FO is the activated time fraction of a CAP, and

reflects its overall activity level.

(2) Transition probability, which is defined by:

TPij ¼ Tij=
X

j

Tij

where Tij is the number of transitions from the i-th CAP to

the j-th CAP in the CAP sequence. Transition probability

specifies the possibility of transition from a CAP to

another CAP.

(3) Persistence: For each CAP, the average persis-

tence (dwell time) potentially reflects the average

hemodynamic response period, implying the aver-

age duration and intensity of neural activities in

these regions once activated.

(4) Transition entropy, which is measured by Shannon

entropy:

TEi ¼
X

j

TPijlogTPij

The transition entropy measures the uncertainty of

transition given a current CAP depending on its transition

probabilities to the other CAPs. This is a disorder metric
Fig. 1. Spatial maps of the obtained CAPs and their mean FOs for the thr

numbers in MNI space: z = �15, 0, 15, 30, 45, 60.
of the temporal organization of the state space. This

value would become smaller if a CAP tends to have

determinate follow-up CAP(s).

(5) CAP entropy, which is also measured by Shannon

entropy:

CEi ¼
X

i

FOilogFOi

The transition entropy measures the presence uncertainty

of CAPs depending on their FO values. This value would

become smaller if there exist(s) dominant CAP(s), whose

FO value is (are) significant larger than other CAPs.

Statistic analysis

Group wise comparisons of the CAP temporal

dependence measurements were made by Student’s t

test. The relationships between the CAP temporal

dependence measurements and CSF biomarkers were

assessed by Pearson correlation coefficients and their

relationships to neuropsychological scores were

assessed by Spearman’s correlation coefficients.

RESULTS

After removing the clusters with extreme few members,

we obtained 9 CAPs with clear and specific spatial

maps (Fig. 1, left column) and the co-activated regions

of each CAP are listed in Table 2 (middle left column).

High correspondence can be observed between the

obtained CAPs and acknowledged functional networks
ee groups. Axial slice
(Table 2, middle right column),

where the correlation between a

CAP and a functional network were

constructed when the co-activated

regions contain the most core

nodes of the functional network.

(Bell and Shine, 2015; Bressler and

Menon, 2010; Heine et al., 2012;

Riedl et al., 2016; Shafiei et al.,

2019; Yeo et al., 2011; Yuan et al.,

2016). The relative FOs of the CAPs

are also shown in Fig. 1(right

column).

FO and persistence of DMN
related CAP decreases from NC to
AD

The DMN related CAP 2 has the

highest FO among all CAPs. This

reasonable as the DMN are

supposed to be the primary

activated network in resting state.

Notably, there is a decline trend of

the FO of CAP 2 from NC to EMCI

and to AD. Meanwhile, the FO of

CAP 9, which showing strong de-

activation of DMN, also has the

same decline tendency. These

results implies that the ‘‘DMN



Table 2.Main co-activated brain regions of the CAPs and their relevant

functional networks. These regions were identified by a brain atlas in

MNI space

CAP Activated brain regions Relevant functional

networks

1 ACC, dlPFC, mPFC, Caudate ECN

2 PCC/Precuneus, mPFC, AG DMN

3 Putamen, Insula, HI SubCN

4 IPS, FEF DAN

5 IPS, Temporal pole —

6 Calcarine, LG, Cuneus,

Precuneus, IPL

VN (dorsal)

7 Calcarine, LG, PHG, HI,

Thalamus

VN (ventral)

8 PoCG, PrCG, PCL, SMA SMN

9 Insula, SMA SN, SMN

Key: ACC, anterior cingulated cortex; dlPFC, dorsal lateral prefrontal cortex;

mPFC, medial prefrontal cortex; PCC, posterior cingulated cortex; AG, angular

gyrus; HI, hippocampus; IPS, intraparietal sulcus; LG, lingual gyrus; IPL, inferior

parietal lobe; PHG, parahippocampus gyrus; PoCG, postcentral gyrus; PrCG,

precentral gyrus; PCL, paracentral lobe; SMA, support motor area; ECN, exec-

utive control network; DMN, default mode network; SubCN, subcortical network;

DAN, dorsal attention network; VN, visual network;, SMN, sensorimotor network;

SN, salience network.
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collapse” discovered by conventional correlation-based

FC analysis may result from the decreased frequencies

of instantaneous co-activations and co-deactivations of

DMN related areas. For mean persistence, significant

difference was also found at CAP 2 (AD < NC,

p= 0.032, uncorrected), where a more apparent

decline trend can also be found. This indicates the

decline of overall FO might arise from the shorten

lifetime of each co-activation of DMN (Fig. 2a).

FO and persistence of ventral visual CAP is higher in
AD than EMCI

Significant difference was found between AD and EMCI in

terms of the FO of CAP 7 (AD > EMCI, p= 0.018,

uncorrected) and the persistence of it also tends to

increase from NC to EMCI and to AD, despite no

statistical significance (Fig. 2a). This CAP has high

spatial overlap to the ventral visual stream. In contrast,

as another stream of visual information processing, the

dorsal-stream related CAP 6 presents significant

declined persistence for AD compared with NC group

(p= 0.046, uncorrected) (Fig. 2a), but the no significant

difference was found in terms of the FO.

OVERALL TRANSITION AND CAP ENTROPIES
ARE HIGHER IN AD

Although significant difference was only found at CAP 7

(AD > EMCI, p= 0.023, uncorrected), the overall

entropies of all the CAPs can be found higher in AD

group compared to NC and EMCI (Fig. 2b). The mean

CAP entropies of AD, EMCI and NC groups are 2.193

± 0.042, 2.164 ± 0.049, and 2.172 ± 0.062,

respectively, and there is significant difference between

AD and EMCI groups (AD > EMCI, p= 0.0093,

uncorrected). No significant difference was found

between NC and EMCI for these two parameters.
Transition probability comparisons

The transition probability matrices of the three groups are

shown in Fig. 3. For both EMCI vs. NC and AD vs. NC,

significant lower CAP 9 to 4 transition probabilities was

found (p< 0.05, uncorrected). Besides, for AD vs. NC,

significant higher transition probabilities were observed

for CAP 4 to 1, CAP 3 to 7 and CAP 9 to 7 (p< 0.05,

uncorrected).
Correlations to CSF biomarkers and
neuropsychological scores

The transition entropies of CAP 7 show significant

negative correlation to the accumulation of Ab while

positively correlated to tau and p-tau (Fig. 4A–C).

Notably, CAP 7 involves activation of parahippocampal

gyrus and hippocampus. This finding implies the altered

temporal organization of these CAPs may potentially

attribute to the pathologically induced change of Ab or

tau accumulation in these AD-specific brain regions.

Besides, the persistence of CAP 2 and 6 is found

respectively correlate to p-tau and tau (Fig. 4D, E),

suggesting the elevated tau accumulation plays a role in

the damage of DMN especially the posterior DMN.

Total transition entropy of significantly correlated to

MMSE (r= �0.22, p< 0.05, uncorrected), CDR

(r= 0.25, p< 0.05, uncorrected) and FAQ (r= 0.30,

p< 0.01, uncorrected), indicating this measurement

may associate with a subject’s overall cognitive status.

Besides, the persistence of CAP 2 and 6 is found

significantly correlate to CDR (r= �0.21 and

r= �0.23, p< 0.05, uncorrected) and the persistence

of CAP 7 is found significantly correlate to ADNI-MEM

(r= 0.20, p< 0.05, uncorrected). The transition

entropies of CAP 7 and the CAP entropy is significantly

correlate to FAQ (r= 0.22 and r= 0.2, p< 0.05,

uncorrected). No significant correlation is found between

proposed measurements and GDS or ADNI-EF.
Reproducibility of the CAPs

K-means clustering has the problem of local minimum. To

estimate the reproducibility of the present study, we

additionally repeated the clustering for 4 times to

compare with our primary trial. Specifically, for all the

CAPs obtained in each repetition trail, we computed

their activation area overlapping rates on the referring

CAP 1–9 shown in Fig. 1. Table 3 collects the rates

obtained from the repetitions. Repetition 1 resulted in

very similar CAPs to our primary results, in that the

clustering fell into almost the same local minimum as

our primary trail. The rest 3 repetitions revealed that the

CAP 2, 6, 7 were the most stable CAP, because the

overlapping rates across trails are all beyond 80%. CAP

3, 4 and 9 could also be reproduced well, with the

overlapping rates beyond 60%. CAP 1 and 8 could be

reproduced but were not as stable as former CAPs, with

the overlapping rates range from 30% to 70%. Only

CAP 5 was poorly reproduced, with the overlapping

rates at about 30%. Further investigation revealed that

the reproducibility is partly correlated with the intra-



Fig. 2. (A) Mean persistence and (B) mean transition entropy of the CAPs for the three groups.

*Statistical significant (p< 0.05, uncorrected).
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cluster spatial similarity, in terms of which the CAP 5 has

the lowest value among all the CAPs.
DISCUSSION

In this study, we validated the information provided by

traditional FC analysis could condense into a set of

CAPs and further temporal dependence analyses

revealed AD related alterations of brain functional

dynamics. In general, the primary findings include the

decreased FO and mean persistence of DMN related

CAPs, the increased/decreased mean persistence of

ventral/dorsal visual network in disease progression, the

higher transition and CAP entropies in AD group, and

the multiple changes of transition probabilities. In this

section, we discuss these findings based on existing

studies, and try to inspire new thoughts about the

abnormal brain dynamics in AD.
DMN damage in the AD
progression

The decline of the FO of DMN

related CAPs is in line with the

previous findings, demonstrating

the progressive DMN damage

from the early MCI to the late

dementia stage. Multiple imaging

approaches have converged to

imply DMN disruption in AD

progression (Buckner et al.,

2008). Researches of resting glu-

cose metabolism revealed the ear-

liest evidence that the default

network is disrupted in AD. The

pattern of hypo-metabolism shows

great similarity to the posterior

regions of the DMN (Buckner

et al., 2005), and hypo-

metabolism in AD progression

was previously reported to be

related to the patients’ mental sta-

tus (Herholz et al., 2002). In addi-

tion, patients with genetic risk of

AD also present similar metabo-

lism difference in DMN, suggesting

that these changes may occur at

the early stage of disease

(Reiman et al., 1996). Structural

atrophy was discovered in DMN

and medial temporal subsystem

(Ma et al., 2016; Thompson et al.,

2003) and accelerated at the pre-

clinical AD stage (Buckner et al.,

2005). Task fMRI studies found

the AD patients showed signifi-

cantly attenuated task-induced

deactivation of DMN (Celone

et al., 2006; Lustig et al., 2003),

and many resting state fMRI stud-

ies have reported the changes of

intrinsic activity correlations among
DMN regions (Celone et al., 2006; Wu et al., 2011).

Interestingly, we found the overall DMN disruption

might be mainly associated with the shorten persistence

of each time of DMN co-activation. Although rarely

reported in the literature, we suspect this is also related

to the reduction of glucose metabolism (Minoshima

et al., 1997) and the build of Ab protein (Buckner et al.,

2005) in the DMN areas, because our results indicate that

the persistence of DMN related CAPs decreases with the

deposition of Ab. These effects ultimately lead to the

reduction of haemodynamic response and less blood

flow, which may shorten duration of high blood-oxygen-

level dependent signal when these areas are activated.

We also found that the DMN did not show salient co-

activation with hippocampus as illustrated by CAP 2.

Instead, the hippocampus was more likely to be co-

activated with subcortical network and ventral visual

network, i.e., the CAP 3 and CAP 7. This result appears

to be not coincident with a previous independent



Fig. 3. (A) Transition probability (from CAPs along Y axis to CAPs along X axis) matrices of the three groups. The sum of each row is 1. (B) Pair-
wise group comparisons of their transition probability matrices, a blue/red block represents significant lower/higher (p< 0.05, uncorrected)

transition probability.
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component analysis (ICA) based study (Greicius et al.,

2004) which reported the co-activation of DMN, medial

temporal lobe and hippocampus in healthy elderly. How-

ever, the definition of ‘‘co-activation” in their study actually

means these structures belong to the same component

(with similar temporal behavior), which is different from

us. If we look at the transition probability matrices pre-

sented in Fig. 3a of this study, we can find the follow-up

CAP of CAP 7 has higher probability to be CAP 2 for all

the three groups. Therefore, we speculate the activation

of hippocampus and DMN is not simultaneously but suc-

cessively with a short delay, and this may correspond to

a process that the information of memory and perception

from visual network and hippocampus flows into the DMN

functional hub such as PCC/Precuneus.
The role of visual networks in AD

Deterioration of higher-order visuospatial abilities has

been recognized in AD as an early and prominent

clinical sign. Although the neurophysiologic basis

remains debatable, previous visual task based studies

(Franceschi et al., 2007; Paxton et al., 2007) mostly sug-

gested this was attributed to the dysfunction of the ventral

visual stream, also known as visuoperceptual stream, due

to its cognitive relevance. However, in this study, at
resting state, the FO and persistence of the ventral visual

stream related CAP 7 was found significantly higher in AD

than EMCI and also tend to be higher than NC, which indi-

cated the enhanced activity in these regions in AD. This

seems contradictory to the experience from previous

studies. One explanation is that the activation of visual

cortex is essentially different in rest and task; but we

incline to another hypothesis that the function of the

visuoperceptual stream itself is preserved in AD type

dementia. Indirect supporting evidence includes the sig-

nificant better performance of AD patients than dementia

with Lewy bodies (DLB) patients in visual perception tasks

(Mitolo et al., 2016; Wood et al., 2013a,b). Besides, a very

recent fMRI research (Krajcovicova et al., 2017) reported

the altered interaction between PCC/Precuneus and

visuoperceptual network in MCI and AD compared with

NC in a visual task. This implied the dysfunction of high-

order visual processing presented in AD and MCI patients

might come from an inefficient communicating mecha-

nism between these regions.

In addition, we found the mean persistence of dorsal

visual stream related CAP 6 was significantly lower in

AD than NC, however, patients with AD did not show

significant lower but even slightly higher mean FO than

NC. This implies that the areas of dorsal visual stream

may also have decreased haemodynamic responses



Fig. 4. (A-C) Correlations between the transition entropy of CAP 7 and CSF biomarkers. (D-E) Correlations between the persistence of CAP 2 and

6 and CSF biomarkers.

Table 3. Overlapping rates of the corresponding CAPs between the

repetitions and the CAP 1–9 present in Fig. 1

CAP Rep1 Rep2 Rep3 Rep4

1 0.90 0.5 0.53 0.74

2 0.93 0.83 0.84 0.89

3 0.87 0.6 0.57 0.72

4 0.87 0.53 0.7 0.77

5 0.62 0.28 0.32 0.3

6 0.97 0.8 0.82 0.87

7 0.86 0.92 0.88 0.82

8 0.62 0.5 0.56 0.38

9 0.91 0.69 0.78 0.88

Key: Rep, repetition.
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when being activated in AD but they were more frequently

visited. The pathophysiological mechanism of such

interesting alterations in visual networks remains further

study and validation.

The correlation between visual and network related

CAPs and the CSF biomarkers
Elevated overall system uncertainty in AD

Interestingly, AD patients showed overall higher transition

entropies for the most CAPs, especially for CAP 7

(Fig. 2b), which involves visual areas, temporal cortex

and hippocampus. In the perspective of information

theory, these elevated entropies may indicate the
system has higher state transition uncertainties. In other

words, the mode of information flow in AD brains might

have changed. The significant change of the transition

entropy of CAP 7 may reflect, in AD brains, the

functional modules for processing the information from

visual-perceptual stream and hippocampus may have

essentially changed compared with NC and EMCI.

Further, as indicated by the correlation of this parameter

to the CSF biomarkers, we speculate that the elevated

tau accumulation in CSF and the Ab deposition in the

temporal cortex and hippocampus, which have disrupted

the connections or cause the death of neurons, might

be the pathological basis of the altered information flow-

mode in these areas.
Possible interpretations of the CAP transition
probability alterations

The comparisons of AD vs. NC and EMCI vs. NC both

revealed the lower CAP 9 to 4 transition probability.

Noticed this is accompanied by lifted probabilities of

CAP 9 to 2 for EMCI and CAP 9 to 7 for AD (Fig. 3b).

In other words, the chance of triggering DAN by SN is

reduced; instead there is more chance to trigger DMN

and visual-perceptual networks. This change may serve

as a biomarker for early disease diagnosis. Interestingly,

it reminds us of a latest perspective suggesting the SN

mediates the switch between DMN and central

executive network (including posterior parietal cortex

and dlPFC) under emotional or sensory stimuli (Uddin,
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2015). We consider these altered transition probabilities

for SN related CAP 9 may relate to the changed ‘‘switch-

ing” mechanism of SN, of which the dysfunction has been

observed to exist in AD (He et al., 2014).

Another common change identified by AD vs. EMCI

and AD vs. NC is the elevated CAP 4 to 1 transition

probability. This enhanced DAN to ECN pathway may

have potential disease progression relevance.

Researchers have suggested that the executive

dysfunction of AD is linked with connectivity change in

ECN related regions. Specifically, most previous studies

(Agosta et al., 2012; Anor et al., 2016; Seeley et al.,

2007; Zhao et al., 2018) found increased connectivity

between regions of the left executive network in patients

with AD. A recent study (Cai et al., 2017) even revealed

the effective connection patterns of ECN core regions

and some specific connection circuit in ECN were differ-

ent across MCI progressors and non-progressors.
Possible biological mechanisms of the CAPs

CAP method regards fMRI signals as a result from brief

and temporally isolated events of neural activity, rather

than continuous, ongoing oscillations assumed by

traditional correlation analysis or ICA (Liu et al., 2018).

Basically, a single fMRI image depicts in which regions

the blood oxygen metabolizing level (directly correlate to

the intensity of neural activity) is high. Some of the co-

activated regions are intrinsically and closely connected

across which the neural activity could rapidly (within an

fMRI time slice) spread. Such regions could thus com-

pose an intrinsic functional network. There are many elec-

trophysiological evidences supporting the neural

excitation and inhibition could be aroused and spread

over the cortex within time of hundreds of milliseconds,

via local neuronal networks and nerve fibers connecting

remote regions (Luczak et al., 2007; Massimini et al.,

2004; Murphy et al., 2009b). However, for each specific

time slice, not all the co-activated regions are from the

same network. Regions with intrinsic connectivity are

more likely to show recurring co-activation over time.

Therefore, we could to reconstruct these intrinsic func-

tional networks by clustering on numerous fMRI frames.

In other words, the clustering process for CAP construc-

tion is actually a ‘‘filtering” process to extract the intrinsic

functional networks from the ‘‘noisy” individual fMRI

images. Start from the above neurophysiological under-

standing of CAP, we believe that the analysis of CAP

sequences could reflect many aspects of neural activity

in functional networks, such as its intensity, dwell time

and cross-transition mode.
Some issues about state-space models

Among the emerging state-space models, CAP method

should be the simplest one which requires very few

assumptions. The original CAP study (Liu and Duyn,

2013) aimed to account for the connectivity fluctuation

of functional network such as DMN using a set of CAPs.

However, only spatial variations across these CAPs were

studied while the temporal dependence among the CAPs

has not been well documented yet. In this study, the
temporal dependence of CAPs was estimated by multiple

parameters calculated retrospectively after the clustering

process. A previous study also explores such temporal

dependence using a HMM–Gaussian model (Vidaurre

et al., 2017). In their study, both node (obtained by ICA)

activation levels and their FC were modeled into the

states, and their transition probabilities were updated iter-

atively to drive the inference process. Functional net-

works such as DMN and visual networks could also be

observed by their model and can be further classified into

two meta-states. Following the instruction of their toolbox,

we applied their method to the data in this study. How-

ever, it turned out the sample size (total number of time

points) in this study might not be sufficient to generate

stable results using their model. Compared to the

HMM–Gaussian model, CAP method are more conve-

nient to apply due to much fewer model parameters.

Another very recent study (Iraji et al., 2018) proposed a

hierarchical state-space model to investigate brain

dynamics both spatially and temporally. Their method

can be regard as a combination of ICA and CAP methods,

where the ICA was used to extracted intrinsic functional

networks to construct a set of function domains (FDs)

via a semi-automatic procedure and the k-means cluster-

ing was used to identify a set of different spatial states for

each FD. By this way, they obtained subject-wise state

sequences for each FD. Different from our method and

the HMM–Gaussian method, they assumed multiple spa-

tial states from different FDs could be activated simultane-

ously, so that each time-frame was a mixture of these

states. These two state-space models both suggested

hierarchical structure of the brain dynamics, while the for-

mer observed this structure from their results and the lat-

ter just directly adopted a hierarchical model. State-space

approaches are convenient to combine with a hierarchical

design, which is effective at the most time, to analyze the

dynamics of complex system like human brain.

No matter how a state-space model is organized, it is

important to control the complexity of it, especially for

choosing appropriate number of states. Too many

states may lead to poor signal to noise ratio and

reproducibility for single state, and result in poor

reliability for the following quantitatively analyses.

Currently, though some automatic techniques (Damaraju

et al., 2014; Vidaurre et al., 2017) are available for k

choosing, we thought the supervision of researchers

remains indispensable for practical applications.

In summary, CAPs with high correspondence to the

functional networks defined by traditional FC analysis

could be robustly observed no matter in AD, EMCI or

NC group. Multiple differences were identified across

the three groups in terms of the temporal dependence

of the CAPs. We provide a new perspective to explain

the brain functional alterations in AD and further

proposed several interesting biomarkers for assisting

AD treatment and early diagnosis.
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